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1. INTRODUCTION!

Our objective is to provide a more general theoretical basis for
those methods for solving constrained minimization problems that are
based on successive unconstrained minimizations of a parametric
auxiliary function. In order to do this, we first give basic defining
properties of a general auxiliary function and obtain a proof of local
convergence for the mildly regulated nonconvex problem. We proceed
from this general result to develop a family of auxiliary functions by
giving the general function more and more structure, eventually being
led to the general form of the " penalty' functions that conventionally
have been utilized. Similarly, the problem structure is increasingly
specialized and we deal finally with the convex problem. As expected,

stronger results are obtained as additional structure is assumed.

1] This paper is based on material developed in (1] and essentially constitutes

a generalization of results originally obtained in 5],




-3-

The problem of interest is the general mathematical

programming problem

Ty s — e’
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(A) minimize f(x)
subject to gi(x) 20 y i=,2,...,p and
hj(x)=0 v j=1,2,...,q , where x ¢ ER,

Since we wish to assume little more than the continuity of
the problem functions for many of our results, we must account for
local minima in problem (A). Even with local minima present, we
could still take the point of view that only global minima are of
interest, and concentrate on analyzing what is needed to bring about
convergence to a global solution. However, our point of view is te

attribute importance to the determination of any local minimum !

objective function value v* of problem (A), and to deterir.ine at least

one local minimum x* such that f(x*) = v*. Global results follow

as a byproduct of local results in this approach.

In view of this objective, we must guarantee that a sequence
of points will be generated converging to any set of local minima
yielding a given objective function value. For the techniques that we
shall develop here, a key r1equirement is that, in the interior of a
srecified domain of interest, each such set contains a suitably prescribed
closed subset. In the development given in (5], it is assumed that any
such set is compact. We shall utilize this assumption, concentrating

on generating bounded sequences converging to finite local solutions of (A),

] We address curselves to developing methods that generate
a sequence of points converging to a local solution of (A) by means of

successive unconstrained minimizations cf a parametrized auxiliary

Also, we restrict our attention to auxiliary functions which, under

;1- j . function, over a specified sequence of values of the involved parameters.,
bN

¥
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suitable conditions, converge in value to the value of the objective
function f(x) at a local minimum of (A). In our developm.ent, we are
less concerned with the form: of the penalty function and concentrate on
those properties the function must possess in order to define a con-
vergent sequential unconstrained minimization scheme. Our results are
considerably mrore general than those obtained previously.

Particular realizations of sequential unconstrained n.ethods
inthe class we shall develop have been only recently validated, by
Parisot [7]for the linear problern, by Pietrzykowski (3], Fiacco and
McCormick f2], 3], (4], and Prmentale 9] for the convex problem,
and by Stong [10], Zangwill [12] and Fiacco and M.cCormick 5] for
nonconvex problems as well. Many of these results, and in particular
the principal convergence theorems, will be largely subsumed in the
development following,

In Section 2, we define a generalized auxiliary function ard
prove that it yields a sequence of local uncorstrained minima whose
limit points are local solutions of the problem, under mild regulatory
conditions. The function is defined in such a manner that, if the set
of points satisfying a specified constraint has a nonempty intcrior, then
the constraint can be enforced for all points in the minimizing secquence.

In Section 3, this function is somewhat specialized to yicld
the general forms of ""interior-feasible'" and "exterior-feasible"
auxiliary functions. The convergcace theorems for these functions
follow as immediate corollaries of the abovc general result.

Further specializations lead to the functicns defined and
developed in [5], These subsume the class of interior point and
exterior point '"peaalty’ functions that have conventivnally been utilized

in this approach. A stronger characterization of convergence is given
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for these functions, in Section 4.

For the convex programming problem, the interior and

exterior penalty functions can be defined to be convex, thereby

leading to global and dual results, These were developed in [5)

and are summarized in Section 5.




2.

The Generalized Auxiliary Function for the Mixed Algorithm
For convenience, we shall write problem (A} in the form
(B) minimnize f(x) subject to gi(x) 20 , i=12,...,q.
The following definitions and reeults will be used. The first
is a trivial extension of the fact that a continuous function attains
its minimum on a compact set,
Lemma 2.1
If F(x) is continuous in the nonempty interior of a compact set
V and such that possibly F(y) = + @ for y ¢ (V- v°), then there
exists a finite value v and a point X ¢ v guch that Fx)=v= min,, F(x),
Definition,

A point x* e G = {x!gi(x) 20,1=1,...,q} is a local minimum of

problem (B), if there exists an open set N such that x* ¢ N and
*) = i 2 *®) = i
f(x*) mmGﬁNf(x). If N can be selected such that f(x*) mme(x),

x* is referred to as an unconstrained local minimum of (B).

Otherwise, x* is called a constrained local minimum of (B).

The lemma following will be used in proving the convergence of
a minimizing sequence to a prescribed compact set of minima
yielding a given local minimum value of f(x) in problem (B).

For significant additional generality, we req uire the definition
of an "isolated" set.
Definition.

A nonempty set A" C A is called an isolated set of A if there

exists a closed set E such that E° D A* and such that if

x € (E-A¥), then x ¢ A,




We assume continuity of the functions of problem: (B) and
consider aa isolated set A* of local minima A yielding a particular
local minimum value, say f(x) = v¥, The following result asserts
that there exists a compact set S such that s° o A% , and such that

the set of global minima of

(B*) minimize f(x) subjectto x¢G(]S

is given by A*,

Let A = {x/f(x) = v¢ and x is a local solution of (B)}.
Lemma 2.2. Existence of Compact Perturbation Set.

If the functions of (B, are continuoue and if A* is a
nonempty compact isolated set of A, then there exists a
compact set S such that s° > A* and, if X @ GNS and
minGnsf(x) = f(.)—c) , then x cA¥*,

Proof. By assumption there exists a closed set E such that
E° DA% and xe¢ (E-A¥) implies x 4A . Since A* is compact, it
such that A*cSCCE anrd

k k
such that {Sk}lA* . If the conclusion of the lemma is false, then

follows that there exist compact sets S

minGn Skf(x) = f(xk) < v¥ , with xk eG N Sk and xk 4 A* for every k.
Since A* is closed and since {xk} must contain a convergent sub-
sequence {x 1}, it follows that xkj -xea*,

If fixJ)<vk= f(x) for all j,» the above implies that x is not
a local minimum of (B), a contradiction of the definition of A*, If
f(x J')= vk for some j =] then, by construction of {Sk} » V¥ must be
the minimum value of f(x) in GnSk. for j 23 . But since xke Sl:__

k) )
for k large enough, this means xJ 1is a local solution of (B) with

FTRBTCRT ¢ TR Ty I TR erevTow| ‘

ooy
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. k,
value v* for j large enough; i.e., xlSe ANE and hence, x ! c¢A*
for all j large enough. Thus, the conclusion follows for this case, also,
Q. E. D.

The equivalent problems (A) and (B) can also be formulated as
(M) minimize f(x) s.t. x¢e R Q,

where R = {xlgi(x) 20,i=1,...,m} and Q= [x[gj(x) 2 0, j=m+l,...,q}.
If there are any equality constraints, we assume these appear among the
last q - m constraints (i, e., they are involved only in defining O and

not in defining R), However, Q may contain inequality constraints as
well,

It is assumed that R° $0 and 0% ¢. Itis desired to solve
(M) Dby generating a sequence of unconstrained minima of an auxiliary
function in such a manner that the sequence must be restricted to Ro h
but need not be restrictedto Q.

As throughout, we tacitly assume that x ¢ E" and the functions
of problem (M) are continuous. The generalized auxiliary function is
defined as follows.

Defining Properties of V(x, r,t).
i) V(x, r,t) is continuous for x eR® , forany r>0 and t >0;

ii) If {xk] cR® and xk -y eR- R®, where ly|l <=, then

limk_‘mV(xk, r,t) =+ forany r >0, t>0;

T k o k
iii) If {x YcR , rk>0 and tk>0 for every k, and (x 'rk’tk) -

- (y,0,+=), with [y || < ®, then lim im"k V(xk, T tk) = += if y¢ Q,

2 f(y) otherwise;
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iv) f yeR°N q, r, >0 and t, >0 for every k, and (r (0, +=),

kb
then limk_m V(y, 0 tk) = f(y) .

Realizations of V(x,r,t) follow in the ensuing development,
With V(x,r,t) so defined, a sequential technique having the

desired properties can be validated under suitable conditions, Let

A = {x|f(x) = v* and x is a local solution of (M)}.

Theorem 2.1, Convergence of V-minima to Local Solutions of (M).
If the functions of (M) are continuous, V(x,r,t) is as above,
Roﬂ Q%0 , RNQ= Roﬂ @, A¥ is a nonempty compact
isolated set of A, r, >0 and t

k k
(rk, tk) -~ (0, +=) , then: (a) there exists a compact set S as

>0 for every k with

given in Lemma 2,2, so that SOD A* and, for all k large
enough, the unconstrained minima {xk} of {V(x,rk,tk)} in
R NS exist and every limit point of the uniformly bounded

sequence {xk] is in A*, and (b) V(xk

Ty tk) -vE,

Proof, Let V(xk, T tk) = infR N SV(x, rk,tk) , where S is the
compact set defined in Lemma 2, 2. Recall that this also means that
RN s®oa* sSince A*<RN Q and RN ¢ =R°() Q, it follows that
R°N S $9.

By property (i), V(x,r,t) is continuous ir Roﬂ S forr >0
and t >0, By (ii), V{(x,r,t) = += as x -y if x ¢R° and y ¢ (R-R®),
for any r >0, t >0. These facts imply that {x°} =R®f} 5. The fact
that, for any T, >0, tk >0, xk exists minimizing V(x, I tk) in the
compact set R ﬂ S follows from Lemma 2.1.

Since R [} S is compact, {xk} must have a convergent

subsequence which, for convenience, shall still 2 denoted by {xk} .

Hence, we can assume X" -y°e R()S. In particular, this also means

_—




y

”yo ' <o, Ve shall show that yoeA* .

By hypothesis, R (| Q is the closure of Roﬂ ¢ and hence, by
the continuity of f(x), there exists x° e Roﬂ Q ﬂ S such that
f(xo) Svk+e, any € >0, By definition of xk 3

2. 1) Vi = Vix°, r

K b S K )

and now property (iv) implies that

.. k . o _ o
(2.2) lim mfk Vix ,rk,tk) < lim mfk Vix, r k) =f(x )S vk +e

K’ t
for any € >0, by suitable choice of x° .

If yo 4 C then, by property (iii), limk_m° V(xk, T tk) = 4w,
which contradicts (2.2). Thus, y" eR\SNQ.

If yo ¢ A* then, by definition of S, it follows that f(yo) z vk 4+ )\,
for some X\ >0, By property (iii) this means that
lim infk V(xk, Ty tk) e f(yo) 2 v¥* + N\, which again contradicts (2.2), since
we can select x° above such that €<\ . Consequently, we must have
yo e A”,

Further, since [xk} cR°® . xk - yo and yo € A* crl s° , this
also means that for k large enough, xk eRof) s® . Thus, the xk are
uniformly bounded unconstrained n-inima of V(x, Ty tk) in Roﬂ s for
large k, and every limit point of [xk'} is in A*,

For part (b ), since yo e A¥*, (2.2) and property (iii) imply that

2. 3) vk = £(y°) < lim inf, VxS, r,,t) S et e,

k't

for any €>0, Similarly, (2.1) and properties (iii) and (iv) yield
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(2. 4) v¥ = lim 8UPy o V(xk, r k) Svk4e ,

k't
nl k —

for any €¢>0. From (2.3)and (2. 4), limk_mV(x v Ty tk) =v¥,

0. E. D,

The following corollary gives the global result indicated in the

S o

previous discussion. It will be appar=nt that this result follows immediately
b from the theorem and the fact that the set of global minima of (M) must be
closed under our assumptions on the problem functions. The second
corollary is an obvious conse juence.
Corollary 1. Convergence to Bounded Set of Global Minima.
Assumring the hypotheses of Theorem 2.1, if the sat A¥ of global
minimra of problem (M) is bounded, then the conclusions of the
theoremr hold and the sequence of unconstrained local nm:inima {xk}
of {V(x, rk,tk)} in R/} S is such that every limit point is a global
minimum of (M),
Corollary 2. Convergence tc Isolated Local Minimum,
Assuming the hypotheses of Thenrrem 2.1, if A* = {x*} and x* is an
isolated local minimrum of (M), then the conclusions of the theorem

hold and, furthermore, the sejuence of unconstrained local minima

[xk} of {V(x,r )} in P. /1S is such that [xk} itself
k

k't
converges to x*,
Before proceeding with the general development, a few interesting
facts rr ay be noted about the general auxiliary function that has been
defined. Suppose this function has the form V([f(x), gl(x), oy gq(x), r,t],
V is once differentiable in f, Bpresss gq , and these latter functions are
differentiable in x, for x ¢R® andany r >0, t >0. Then, if x* is a

} local unconstrained minimum of VYV, dznoting the corresponding value of V

L~

Gaa it " N " % b 2 shetind
ki ittt R b a0 Etirhaali il st 2 -




by Vk, it follows that

ovE = & o)+ 5~ vg (X = 0.
A(x) =loagx)
k k

This equation is the same as VL (x ,u ) = 0, where L is the Lagrangian
associated with Problem (M), providing we assume aV/Bf(xk) $+ 0 and we

set

« ~3V/%8; ()

s K
V3 ()

This shows how we can be led to establishing a direct connection between
the conditions that hold at a local minimum of the penalty function and
the conditions that hold at a local solution of (M).

The above also indicates the connection with duality in the convex
programming problem that will be briefly summarized in Section 5. If
V is convex increasing in the convex function f and decreasing in the
concave functions gi(x), i=1...,q, then it follows that V(x,r,t) is
a convex function in R®, If we further assume 3V/3f >0, then it follows
immediately that (xk, uk) is a dual feasible point.

Thus, the connections between the conditions associated with
minimization of the penalty function and the optimality and duality
conditions are apparent simply from the structure of this function, our

defining properties having assumed very little concerning its particular

form.
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3. Generalized Interior and Exterior Auxiliary Functions
Returning to the general development, we wish to be able to solve
Problem (M) when we require only that x eR, or that xe¢Q, i.e., we

wish to solve the problems

M(R) minimize f{(x) subject tc x €R,
and
M(Q) minimize f(x) subjectto xe(O,

using an auxiliary function technique analagous to that given above for
Problem (M).

The Problems M(R) and M(C) have the same basic structure, the
essential difference being that we shall assume R° $+0 and Q#0¢ (so
that we may have 0 = ¢). The remaining distinction is procedural: we
insist on restricting x to R in the course of solving M(R), whereas
x need not be restricted to Q in the course of solving M(Q).

Note that M is the same as M(R) if Q = E" and M is the same as
M(C) if R = E", Since there . cre no restrictions on R and Q in the
above development (other than R° $+0, Q%0), the above convergence
theorem for Problem (M) utilizing V(x, r,t) is valid for R = E” or
Q=E". Ve shall modify the respective definitions of V(x, r,t) in that
we shall assnciate the parameter r with Problem M(R) and the
parameter t with Problem M(Q).

Ve are thus led to the auxiliary functions for M(R) and M(Q) which
we shall call U(x,r) and T(x,t), respectively.

We assume R° + 0 and essentially arrive at the defining properties

of U(x,r) by setting Q = E" and by suppressing t in the definition of

Vix, r,t).

o
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Defining Properties of U(x, r).
a) U(x,r) is continuous for x eR®, for any r >0;

b) If {xX} = R® and x* ~y eR - R?, where !iy!! <o, then

lin:k_mU(xk, r) = += for any r >0;

c) If {xk}c RS, r, >0 for every k, and (xk, rk) - (y,0), where
Iyl <=, then lim inf, U, r ) 2 £ly) ;

d) If y eRo, r, >0 for every k, and r, - 0, then

k
limk_mU(y, rk) = f(y) .

k

Assuming O 3 0, setting R = E" and suppressing r in the
definition of V(x,r,t), we obtain the defining properties of T(x,t).
Defining Properties of T(x,t).

A) T(x,t) is continuous for x ¢ En, for any t >0;

B) If {xk} c E" t >0 for every k, and (xk,tk) = (y,+*), where

k
\y{l <=, then lim inf, T(xk,tk)

+oif y 4 Q,

v

f(y) otherwise;

C) If yeq, tk>0 for every k, and t,_ =+, then

k
limk_mT(y,tk) = {(y) .
As direct consequences of these definitions anc the previous results,
we obtain methods for solving M(R) and M(Q).
Theorem 3.1. Convergence of U-Minima to Local Solutions of M(R).
The convergence theorem for V(x,r,t) applied to (M) is valid if
V(x, r,t) is replaced by U(x,r), (M) is replaced by M(R), O = En,
and t is suppressed, in the statement of that theorem.
Theorem 3.2. Convergence of T-Minima to Local Solutions of M/(Q).
The convergence theorem for V(x,r.t) applied to (M) is valid
if V(x,r,t) is replaced by T(x,t), (M) is replaced by M(Q),

R = En, and r is suppressed, in the statement of that theorem.

A o —eaniosoP O AP o 3 e e

osTReo
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The steps in the proofs of these two theorems are precisely the

same as those in the V-function theorem, with obvious modifications, on

making the indicated substitutions.

4. Additional Results for General Interior and Exterior Penalty }unctlions
We obtain a realization of V(x,r,t) in terms of U(x,r) and

T(x,t) by defining Vl(x, r,t) = U(x, r) + T(x,t) - f{(x). As required by the

definition of V(x, r,t), we assume the problem functions continuous,

R°4 0, and 0% ¢ . The following result is a direct consequence of

the defining properties.

Lemma 4. L Vl(x, r,t) is a V-function (i, e. , a function V(x, r,t) satisfying
(i) through (iv) above. )
""Penalty' functions used in this approach are usually obtained by

adding to f(x) a "penalty term'" which absorbs the effects of the constraints

of the given problem and the involved parameter. Towards develcping
these functions as particular realizations of the functions U(x,r) and
T(x,t) defined above, we define the following. Assume R° $ 0 and

03%0.

Defining Properties of I(x, r).

al) I(x, r) is continuous for x CRO, for any r >0;

b) If {xk} cR® and x* ~y &R - R®, where jy! <o, then
limk_ml(xk, r) = += for any r >0 ;

cl) If {xk] ~R°, T >0 for every k, and (xk,rk) -~ (y,0), where
iy <=, then lim inf I(x",r )2 0;

- 0, then

dl) If y ERO, r, > 0 for every k, and r

k
lxmk_ml(y, rk) = 0.

k

i ', Defining Properties of 0(x, t).

Al) 0(x,t) continuous for x eEn, for any t >0;




s e —— Ry e, 00 - R -
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El) If {xk} cE", t_ >0 for every k, and (xk, tk) - (y,+»), where

k
Iy <=, then lim inf_ 0(xX, ¢

M) +o if ydQ
2 0 otherwise;

Cl) If yeQ,t_ >0 for every k, and t, = +=, then

k k

limk_mO(y.tk) = 0,

With "U-function' and ''"T'-function'" meaning U(x,r) and T(x,t),
respectively, as defined in the previous section, we obtain the fcllowing
direct conseguences.
Lemma 4. 2. Ul(x, r) = {(x) + I(x, r) is a U-function,
Lemma r. 3. Tl(x,t) =f(x) - O(x,t) is a T-function.

The proofs of the lemmas follow immmediately from the continuity
of f(x) and the defining properties.

A further immediate consequence of the three lenmimas above is the
following,
Corollary 1. VZ(x, r,t) = Ul(x, r) + Tl(x,t) - f(x) = f(x) + I{x, r) + 0(x,t)

is a V-function,

This provides a realization of the V-function, associated with Problem
(M), in terms of the objective function f(x) of that problem, and the
penalty functions associated with problems M(R) and M(C) (threugh
Ul(x,r) and Tl(x,t) above).

The penalty functions defined in [5] for the problems M(R),

M(D), and (M) are, respectively,

UZ(x, r) = f(x) + s(r) I(x),
T, (x,t) = f(x) + pft) O(x) ,
and V3(x, r,t) = f(x) + s(r) I(x) + p(t) O(x).

The penalty functiuns utilized to date generally subscribe to the

above forms. We shall summarize the defining properties of




AR
P s  j

— A amaniis ey geip

© s

s(r), I(x), p(t), and 0(x). It follows readily that s(r) I(x) is an I-function
(satisfies properties (al) through (dl) above), and p(t) O(x) is an 0-function
(satis{ies (Al) through (Cl) above).
Defining Properties of I(x) and s(r) [5].

1) I(x) is continuous for x ¢ Ro;

2) It {xk} c R and xk ~yeER - Ro, then lim mi(xk) = to;

k-

3) s(r) is a (scalar-valued) function of r, continuous fer r >0;

4) If ) > r, >0, then s(rl) > s(rz) > 0;

5) If T >0 for every k and T

Defining Properties of 0(x) and p(t) [5].

-+ 0, then lim s(r,) =0.
I k

11) 0(x) continuous for x € En;
2!y o(x) =0ifxeC,
>0 if x d C;
31 p(t) is a (scalar-valued) function of t, continuous for ¢ > 0;
1
>
47) Ift2 t

1 >0, then p(tz) > p(tl) >0;

1 i
57) Ift, >0 for every ! ind t, =+, then lm—.k_mp(tk) = to,

k k
As straightforward consequences of these defining properties we
obtain the following:
Lemma 4. 4. Il(x, r) = s(r) I(x) is an I-function.
Lemma 4. 5. Ol(x,t) =p(t) O(x) is an O-function,
In view of the above results, this means that UZ is a U-function
(i. e., satisfies (a) through (d) above), Tz is a T-function (i. e., satisfies

(4) through (C) above) and V, is a V-function (i. e., satisfies (i) through

3
(iv) above. )
From this point on, we shall be dealing only with the UZ' TZ’ and

V3 functions defined above. For convenience, therefore, we shall revert

to the notation, U, T, and V for these functions.

it e .
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It is first nnted from tac above devciopment that these penalty
functions are special cases nf the general auxiliary functions defined in
Sections 2 and 3, so that the respective convergence theorems apply.
Additional characterizations of convergence follow as corollaries of these
theorems, from the particular structure of these functions.

In the following we assume the cnnditions of Theorems 3.1 and 3.2
are satisfied.

V' e know {xk} CRoﬂ s® for k large, where

minRr\ S U(x, rk) S U(xk, rk) '
and S is the compact set defined in Lemma 2.2, Recall that s° >A*, a
compact set of local mininia associated with the value f(x) = v*. Also,
we know there exists at least one limit point x* of {xk} , and any such
limit point is in A%, The following results show that for U(x,r) as
presently defined, we can assure that the minimizing points yield values
of f, U and I that converge monotonically.
Corollary 1 of Theorem 3. 1.

If Ulx,r) =£{(x) + s(r) I{x), where I(x) and s(r) satisfy properties

(1) - (5) given above, f(x) is continuous, {rk} is a positive strictly

decreasing null sequence, and minR Ns U(x, rk) = U(xk, rk) .

then f(xk) i v, I(xk) f ~, where ~v= += if x¥ ¢ (R-RO) and

[ <= if x*eR° and s(r) 1xX) = 0. Also, if I(x) 2 0 in

Roﬂ S, then U(xk, rk) \(, vk |

Proof. By definition ef xk, U(xk, rk) < Ulx, rk) for every

X € sﬂ R, so that

(4.1 £6) + s(r) 165) = 16 + s(ry) 16, and
(4. 2) () + sry ) 16 < 165 + (e, ) 169),

Multiplying the first inequality by s(rkH), the second by s(rk).
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sumir ing and rearranging yields
k+l k +
[(r,) - 8(r, D126 < [o(2") - o(r ") 15010,
Since T >0 and rkl 0 strictly, s(rk) > s(rk+1) by definition of s(r), so
that f(xk+1) < f(xk). This, togethcr with (4.1), also implies that

k+l) > I(xk).

I(x

Since we also have f(x) 2 v* for xe¢ Sn R, we must have
f(xk) l; 2 vk, We know that at least one limit point of [xk] exists, and
Theorera 3.2 assures us that limit points of {xk] must be in A¥, so that
we must have v = v*; i, e., f(xk) lv* o

The’ conclusions regarding the convergence of I(xk) follow from the
monotonicity shown above and from the preperties (1) and (2) of I(x).

By property (c) of the U functior. and by the result for U(x,r)
aralagous to equation (2.1), it follows that

k,
vk < limj_.mU(x ), T )S vk + ¢

J
for any €>0 and any convergent subsequence {x j} of {xk} . Hence,
U(ka, T ) = v%, It follows that U(xk, rk) - v#* , by the compactness of
J
Rn S and the fact that at least one convergent subseguence exists.
From the above results, we obtain immediately that s(rk) I(xk) -0,

Finally, #f I(x) 20 in R°/)S° , then it frllows that

< = = . Thi :
U(x, rk+l) < U(x, rk) for I I 0 and any x €R Ns This implies
U(xkﬂ, rk-i-l) < U(xk, rk) and using the result shown above, U(xk, rk)L v,
C- E. D-
T e ..i‘“‘ N.M' M A i o Jntanin st bbb ol saediteliibl oo a . e bebliteid) ‘
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The analagous results for the T(x,t) function can be proved in a
similar manner, and are summarized as follows.
Corollary 1 of Theorem 3, 2.
If T(x,t) = f(x) + p(t) O (x), where O(x) and p(t) satisfy properties
(11) - (51) given above, f{(x) is continuous, [tk] is a pesitive strictly
increasing unbounded sequence, and minST(x, tk) = T(xk, tk) , then

T(xk,tk) /r ve, 1) Tve, o5y 0, and p(tk)O(xk) -~ 0.

A
|
l
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5. Global and Dual Results for Convex Programming1

For the following development, we utilize the formulation
(C) minimize f(x) subject to gi(x) 2.0, 1 =156 o e
We shall summarize in this section some of the principal results that hold
when the interior and exterior penalty function methods are applied to solve
(C), when this is a convex programming problem. These methods are
specialized to take advantage of the convexity assumption, essentially
by defining the penalty functions in such a way that these are themse ves
convex functions. The theorems given in the previous section are of course
still valid, essentially with '"local" replaced by '"global." Furthermore,
duality results are forthcoming that provide additional information.

We first discuss the interior point method. It is assumed that
R® = {x,'gi(x) >0, i=1,...,m}$0. Ve shall further assume the penalty
factor I=1(g(x)], where g = (gi, 00 Al gm), and that h(r) = r, so that the
form of the interior penalty function is now U(x, ) = f(x) + rIfg(x)].
Re-all that Ilg(x)] is continuous in F.° and, with {xk] =R° and
oy e(R-R%), 1Tgx")] ~+= .

It is possiblc to assure the convexity of U(x,r) in R® by
appropriately defining Ifg (x)]. The following lemma is immediate and
yields a suitable definition.

Lemma 5.1. Convexity of If{g(x)].
If I{(g) is a convex dec~casing function of g for g > 0, and the

gi(x) arc concave, then I[g(x)] is a convex function of x in R°.

1The material in this section is essentially A summary of some of the results
obtained in {5] and is presented here for completeness. Most importantly,
§ this development shows how the penalty function can be used to take advantage
of the convexity assumption to yield global and dual results.
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It is readily verified, for example, that the functions -ELngi
and ‘Z.'l/gi satisfy the conditions of the lemma. Assuming the hypothesis
of the lemmra holds, then Ilg(x)] is convex, and hence,

U(x,r) = f(x) + rI[g(x)] is convex in R®, for r >0.

The following theorem then holds for U(x,r) as defined. Note that
the cunclusions are immediately in plied by the interior-point auxiliary
function Theoren 3.1, and Corollary 1 (Section 4) of that theorem, once the
convexity assumptions are introduced.

Theorerr 5.1. Interior Penalty N ethod Convergence to Solu:tion of Convex

Progran-ming Problem [5].

If the solutions of the convex programming problen: (C) are bounded,

RC = {x|gy(x) >0, i =1,...,m1% 0, I(g) is defined, decreasing and

convex in g when g >0 and {rk]l 0, then U(x,r) is a convex

function in R° for r >0, for r, small there cxists x(rk) that

k
minirrizes U(x, rk) in Ro, every local minimum of U(x,rk) in
R isa global minirum in RS, any limit point x* of {x(rk)}
solves (C), U rx(rk), rk]l vk, |f rx(rk)]} J vx = mian(x), and
Irx(rk)]T'\', where v =+ if x* ¢ (R - R°), and '] < o if

x3¥ eRo, and r Irx(rk)]—°0 .

k
As expected from the previous general theorem, Theorem 3.1, and
the convexity assumption, the minimizing points are now global and all limit
points are global solutions of (C). The monotune convergence results are
also global. These results follow frorr the convexity of U(x, r) and the
well known fact that any local solution o' the convex programming problem

(C) is also a global solution. Hence, the compact set A* of local minima

of (C) is the unigue set of global minina, and the compact set S, utilized

b
\
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for our previous local results, can be taken to be any compact set S such
that S° > A%,

In effect, the role of convexity is essentially to make the previous
theorem a '"'global" one. It should be mentioned that in [5] a condition
is given that regularizes I[g(x)] such that, for the convex problem the
minimizing x(rk) exists for all ry, > 0, not merely for N small. A
similar condition has not been obtained for the general problem.

A "dual" of problem. (C) was formulated by Volfe [11], assuming
the problem functions are once differentiable. The Lagrangian function
associated with problem (C) is defined as L(x,u) = f(x) -.‘;’.nuigi(x). The

i=l
dual of (C) is then defined as,

(D) maximize L(x,u)
subject to VxL(x,u) = 0, u, 20,i=1,...,m.
The dual relationship is defined in the sense given in the following two
theorems,
Theorem 5.2. Primal-Dual Bounds.,
If (C) is a convex programming problem, y is any primal feasible
point, and (x,u) is any feasible point of (D), then f(y) 2 L(x,u).
Theorem 5.3. Equality of Primal-Dual Values at Optimal Solutions,
If (C) is a convex programming problem and the Kuhn-Tucker

constraint qualification (see Ref.[6]}) holds at a solution x* of

(C), then there exists a solution (x*,u®) of (D) and f(x*) = L{:z%, u*) .
The nondifferentiable form of (D) is given by assuming only continuity

and replacing VXL(x,u) =0 by L(x,u) = infE L(f,u). The first dual thecorem

goes through easily with this change. By making this substitution and
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assuming R° = {x(g;(x) >0, i=1,... ,m} # @, it is possible to dispense
with the differentiability requirement and the Kuhn-Tucker constraint
qualification, and arrive at a non-differentiable version of the second dual
theorem: piven above, assuming only continuity.

In conjunction with the Kuhn-Tucker constraint qualification, it is
relevant to point out the fact that this qualification is satisfied providing
the constraints are differentiable and convex, and the interior of the
constraint region defined by the nonlinear constraints is nonempty [13].

Ve now turn briefly to the significant duality results that follow from
the U(x, r) method. For this development, we give U additional structure,

m

and now assume that the penalty factor has the form _Zl Ii[gi(x)] . The
i=

result applies to the nondifferentiable form of the dual problem,
(TD) maximize L{x,u) subject to L(x,u) = ian L(&,u), ug 20,i=1,...,m.

Theorem 5.4. Dual-Feasibility and Convergence for Interior-Point M.ethods [5].
Assume the conditions of Theorem 5.1, If, in addition, each Ii(gi)
is differentiable in g; when g >0, then for T small enough

[x(r,),u(r,) ] satisfies the constraints of (D) where
k IR
3L {g, [x(r, )]

A

, 1=1,...,m., Furthermore,

U/ s

uylry) = -1
limk_mL[x(rk) : u(rk)] = vk = mian(x) so that all limmit points of
Hx(rk), u(rk)]} solve (D).
The definition of the quantities u.(rk) and the result given above
i
is most readily appreciated by assuming the functions differentiable,

differentiating U(x, r) directly, and comparing the result to VxL(x,u), which

s KT I

N




would appear in the differentiable form of (D).

The above result is a significant one, not generally shared by other
methods, One very important application of it is that upper and lower
bounds on the optimal value v* are generated with the determination of
each minimizing x(rk). This is a direct consequence of the first dual
theorem given above. It provides a natural convergence criterion, Also,
the Lagrange multipliers are critically involved in providing optim:ality
conditions. In effect, the dual theorem provides an explicit relationship
between U(x,r) and the Lagrangian L(x,u) associated with problem (C).

A parallel development for the exterior-point method for the convex
problem is given in [5]. Again, similar conditions are invoked on the
form of T(x,t), assuring its convexity. The convergence theorem is
essentially a ''global" version of the general exterior-point theorem given
in Section 3. Analagous to the devclopment for the U(x,r) interior method,
a condition is given in (5] that guarantees the existence of the minimum of
T(x,t) for all t >0, for the convex problem. Finally, a comparable dual
theorem is proved. In view of the fact that the optimal value is approached
from below in this method, the dual result provides only a lower bound on
the optimal value.

Recalling that R° # 0 is not required for the feasible-exterior
T(x,t) - function method, the above indicated results imply, in particular,
that the Kuhn-Tucker constraint jualification need not be satisfied for
problem (C). This means, when conditions assure that a minimizing
sequence of T(x,tk) leads to a solution of the problem, then we have a way

of characterizing such a solution although the constraint qualification may

not hold.
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